Vacuum Engineering & Materials 390 Reed Street Santa Clara, CA 95050 USA www.vem-co.com **Revision 2017** ## Thin Film Evaporation Guide Toll Free: 877-986-8900 Phone: 408-871-9900 Fax: 408-562-9125 E-mail: info@vem-co.com ISO 9001:2008 Certified | Material | Cambal | Melting | Density | Zvatia | | Temperatur
por Pressu | | Evaporation | Crucible | Damadra | |-----------------------------|---------------------------------|------------------|---------------|---------|------|--------------------------|-------|--------------|---|---| | Material | Symbol | Point °C | (bulk, g/cm³) | Z-ratio | 10-8 | 10-6 | 10⁴ | Method | Liner | Remarks | | Aluminum | Al | 660 | 2.7 | 1.08 | 677 | 821 | 1010 | eBeam (XInt) | TiB ₂ -TiC,
TiB ₂ -BN,
graphite, BN | High deposition rates possible. Al wets IMCS | | Aluminum
Antimonide | AlSb | 1080 | 4.3 | _ | _ | _ | _ | eBeam (fair) | TiB ₂ -BN, BN, C,
Al ₂ O ₃ | Co-evaporation is the best approach | | Aluminum
Arsenide | AlAs | 1600 | 3.7 | _ | _ | _ | ~1300 | eBeam (poor) | TiB ₂ -BN, BN,
Al ₂ O ₃ | Co-evaporation can work but typically done with MBE | | Aluminum
Bromide | AlBr ₃ | 97 | 3.01 | _ | 1 | _ | ~50 | eBeam (poor) | graphite, W | eBeam or thermal evaporation of anhydrous AIBr ₃ powder | | Aluminum
Carbide | Al ₄ C ₃ | 1400 | 2.36 | _ | _ | _ | ~800 | eBeam (fair) | graphite, W | eBeam evaporation from powder, but CVD is a better approach | | Aluminum
2% Copper | Al2%Cu | 640 | 2.8 | | 1 | _ | ı | eBeam (fair) | TiB ₂ -TiC, BN | eBeam evaporation of Al-Cu alloys is possible, but sputter deposition is a better approach | | Aluminum
Fluoride | AIF ₃ | 1257
sublimes | 3.07 | | 410 | 490
sublimes | 700 | eBeam (fair) | graphite, Mo, W | Films tend to be porous, but smooth | | Aluminum
Nitride | AIN | sublimes | 3.26 | _ | _ | _ | ~1750 | eBeam (fair) | TiB₂-TiC,
graphite, BN | Reactive evaporation of Al in ${\rm N_2}$ or ammonia partial pressure | | Aluminum
Oxide (Alumina) | Al ₂ O ₃ | 2045 | 3.97 | 0.336 | _ | _ | 1550 | eBeam (XInt) | W, graphite | Swept beam with low deposition rates (< 3 Å/sec) | | Aluminum
2% Silicon | Al2%Si | 640 | 2.6 | _ | _ | _ | 1010 | eBeam (fair) | TiB ₂ -TiC, BN | eBeam evaporation of Al-Si alloys is possible, but sputter deposition is a better approach | | Antimony | Sb | 630 | 6.68 | _ | 279 | 345
sublimes | 425 | eBeam (fair) | BN, graphite,
Al ₂ O ₃ | As the deposition rate is increased from 3-5 A/s the grain size decreases and film coverage improves | | Antimony
Telluride | Sb ₂ Te ₃ | 619 | 6.5 | _ | _ | _ | 600 | eBeam (fair) | graphite, BN, W | Best results are achieved with
powdered source material, relatively
high deposition rates can be achieved | | Antimony
Trioxide | Sb ₂ O ₃ | 656 | 5.2 or 5.76 | _ | _ | — sublimes | ~300 | eBeam (good) | BN, Al ₂ O ₃ | eBeam evaporation from powder or granules | | Antimony
Triselenide | Sb ₂ Se ₃ | 611 | _ | _ | _ | _ | - | eBeam (fair) | graphite | Can be co-evaporated with Se to overcome variable stoichiometric effects | | Antimony
Trisulphide | Sb ₂ S ₃ | 550 | 4.64 | _ | - | _ | ~200 | eBeam (good) | Al ₂ O ₃ , Mo, Ta | Films without substrate heating are amorphous, while polycrystalline films form on heated substrates | | Arsenic | As | 814 | 5.73 | - | 107 | 150 sublimes | 210 | eBeam (poor) | Al ₂ O ₃ , BeO,
graphite | Sputter deposition is the preferred method for deposition of elemental arsenic | | Arsenic
Selenide | As ₂ Se ₃ | 360 | 4.75 | _ | _ | _ | _ | eBeam (poor) | Al ₂ O ₃ , quartz | Deposition efficiency increases with deposition rate | | Arsenic
Trisulphide | As ₂ S ₃ | 300 | 3.43 | _ | - | _ | ~400 | eBeam (fair) | Al ₂ O ₃ , quartz,
Mo | Thin films tend to be richer in As compared to the source material | | Arsenic
Tritelluride | As ₂ Te ₃ | 362 | _ | _ | ı | _ | 1 | eBeam (poor) | Al ₂ O ₃ , quartz | CVD is the preferred deposition technique for this material | | Barium | Ва | 710 | 3.78 | - | 545 | 627 | 735 | eBeam (fair) | W, Ta, Mo | Reacts with ceramics. Ba evaporation pellets are often shipped with protective coatings which must be removed | | Barium
Chloride | BaCl ₂ | 962 | 3.86 | _ | _ | _ | ~650 | eBeam (poor) | W, Mo | Swept beam and slow power ramp to precondition and outgas the source material | | Barium Fluoride | BaF ₂ | 1280 | 4.83 | _ | ı | sublimes | ~700 | eBeam (fair) | W, Mo | Better consistency in refractive index is achieved via CVD | | Barium Oxide | ВаО | 1923 | 5.72 or 5.32 | _ | _ | _ | ~1300 | eBeam (fair) | Al ₂ O ₃ , quartz | Swept beam and slow power ramp to precondition and outgas the source material | | Barium
Sulphide | BaS | 2200 | 4.25 | _ | ı | _ | 1100 | eBeam (poor) | W, Mo | Sputter deposition is the preferred deposition technique | | Barium Titanate | BaTiO₃ | Decomposes | 6 | _ | I | Decompose | s | eBeam (poor) | W, Mo | BaTiO ₃ will decompose as single
source. Co-evaporate with Ti to
maintain Ba/Ti ratio | | | | Melting | Density | | 10 | | Evaporation | Crucible | | | |------------------------|--|----------|---------------|---------|------|------------------|-------------|--------------|--|--| | Material | Symbol | Point °C | (bulk, g/cm³) | Z-ratio | 10-8 | 10-6 | 10-4 | Method | Liner | Remarks | | Beryllium | Ве | 1278 | 1.85 | _ | 710 | 878 | 1000 | eBeam (XInt) | graphite | Very high deposition rates are possible.
Avoid Be powder sources due to toxicity | | Beryllium
Chloride | BeCl ₂ | 440 | 1.9 | _ | _ | _ | ~150 | eBeam (poor) | graphite | CVD is the preferred deposition technique for this material | | Beryllium
Fluoride | BeF ₂ | 800 | 1.99 | - | _ | — sublimes | ~200 | eBeam (fair) | graphite | Avoid powder sources due to toxicity | | Beryllium Oxide | BeO | 2530 | 3.01 | _ | _ | _ | 1900 | eBeam (fair) | graphite, Al ₂ O ₃ | Thin films can also be produced via reactive evaporation of Be with O ₂ | | Bismuth | Bi | 271 | 9.8 | _ | 330 | 410 | 520 | eBeam (XInt) | Al ₂ O ₃ , graphite | Post deposition thermal annealing significantly enhances film properties. However, vapors are toxic | | Bismuth
Fluoride | BiF ₃ | 727 | 8.75 | - | - | —
sublimes | ~300 | eBeam (poor) | graphite | Sublimes at relatively low temperature, so reasonable vapor pressure can be achieved | | Bismuth Oxide | Bi ₂ O ₃ | 820 | 8.9 | - | _ | _ | ~1400 | eBeam (poor) | _ | eBeam evaporation from Bi ₂ O ₃ source is possible, but variations in thin film stoichiometry may occur | | Bismuth
Selenide | Bi ₂ Se ₃ | 710 | 7.66 | - | _ | _ | ~650 | eBeam (fair) | graphite, quartz | Sputter deposition is preferred, but co-evaporation using Bi and Se sources is possible | | Bismuth
Telluride | Bi ₂ Te ₃ | 585 | 7.85 | _ | _ | _ | ~600 | eBeam (fair) | graphite, quartz | Sputter deposition is preferred, but co-evaporation using Bi and Te sources is possible | | Bismuth
Titanate | Bi ₂ Ti ₂ O ₇ | 1 | I | 1 | [| Decompose | s | eBeam (poor) | graphite, quartz | Decomposes when evaporated. Sputter deposition is preferred, but can be reactively co-evaporated in ${\rm O_2}$ partial pressure | | Bismuth
Trisulphide | Bi ₂ S ₃ | 685 | 7.39 | - | ١ | - | ١ | eBeam (poor) | graphite, W | Can be co-evaporated from Bi and S sources | | Boron | В | 2100 | 2.36 | 0.389 | 1278 | 1548
sublimes | 1797 | eBeam (XInt) | graphite, W | Can react with graphite and tungsten crucible liners. Requires high power to evaporate | | Boron Carbide | B ₄ C | 2350 | 2.5 | _ | 2500 | 2580 | 2650 | eBeam (good) | graphite, W | Ion assisted eBeam deposition with Ar can improve film adhesion | | Boron Nitride | BN | 2300 | 2.2 | _ | _ | — sublimes | ~1600 | eBeam (poor) | graphite, W | Ion assisted eBeam deposition with N ₂ produces stoichiometric thin films, but sputter deposition is preferred | | Boron Oxide | B ₂ O ₃ | 460 | 1.82 | _ | _ | _ | ~1400 | eBeam (good) | W, Mo | eBeam evaporation from bulk source material produces stoichiometric thin films | | Boron
Trisulphide | B ₂ S ₃ | 310 | 1.55 | ı | - | - | 800 | eBeam (poor) | graphite | - | | Cadmium | Cd | 321 | 8.64 | _ | 64 | 120 | 180 | eBeam (fair) | Al ₂ O ₃ , quartz | Dedicated system is recommended,
since Cd can contaminate other purity
sensitive depositions | | Cadmium
Antimonide | CdSb | 456 | 6.92 | _ | _ | _ | _ | _ | - | - | | Cadmium
Arsenide | Cd ₃ As ₂ | 721 | 6.21 | _ | _ | _ | _ | eBeam (poor) | quartz | Thin films can be produced by eBeam evaporation from bulk source material, but CVD is a preferred deposition method | | Cadmium
Bromide | CdBr ₂ | 567 | 5.19 | _ | _ | _ | ~300 | _ | _ | - | | Cadmium
Chloride | CdCl ₂ | 570 | 4.05 | _ | _ | _ | ~400 | - | _ | - | | Cadmium
Fluoride | CdF ₂ | 1070 | 5.64 | _ | _ | _ | ~500 | - | _ | - | | Cadmium
lodide | Cdl ₂ | 400 | 5.3 | _ | _ | _ | ~250 | _ | _ | Cdl ₂ films have been deposited by
thermal evaporation on glass substrates
using stoichiometric powders | | Cadmium Oxide | CdO | 900 | 6.95 | _ | _ | _ | ~530 | eBeam (poor) | Al ₂ O ₃ , quartz | Can be produced by reactive evaporation of Cd in partial pressure of $\mathrm{O_2}$ or reactive sputtering with $\mathrm{O_2}$ | | Cadmium
Selenide | CdSe | 1264 | 5.81 | _ | _ | — sublimes | 540 | eBeam (good) | Al ₂ O ₃ , quartz,
graphite | eBeam evaporation from bulk source material produces uniform films | | | | | | | | | | • | | | | | | Melting | Density | | | Temperatur | | Evaporation | Crucible | | |----------------------|---|------------|---------------|---------|------|------------------|-------|--------------
--|--| | Material | Symbol | Point °C | (bulk, g/cm³) | Z-ratio | 10-8 | 10-6 | 10-4 | Method | Liner | Remarks | | Cadmium
Siliside | CdSiO ₂ | _ | _ | _ | _ | _ | ~600 | _ | _ | Reports in the literature of deposition by CVD | | Cadmium
Sulphide | CdS | 1750 | 4.82 | _ | _ | — sublimes | 550 | eBeam (fair) | Al ₂ O ₃ , quartz,
graphite | Substrate heating improves film adhesion. Deposition rates of 15 Å/sec are possible | | Cadmium
Telluride | CdTe | 1098 | 6.2 | - | _ | _ | 450 | eBeam (fair) | Al ₂ O ₃ , quartz,
graphite | High quality CdTe thin films on glass substrates at 100°C have been fabricated with eBeam deposition | | Calcium | Ca | 842 | 1.56 | _ | 272 | 357 sublimes | 459 | eBeam (poor) | Al ₂ O ₃ , quartz | Low partial pressure of O ₂ in the vacuum chamber is required to avoid oxidizing the Ca | | Calcium
Fluoride | CaF ₂ | 1360 | 3.18 | _ | _ | _ | ~1100 | eBeam (XInt) | quartz, Ta | Deposition rate of 20 Å/sec are easily achieved with eBeam deposition. Substrate heating improves film quality | | Calcium Oxide | CaO | 2580 | 3.35 | _ | _ | _ | ~1700 | eBeam (poor) | ZrO ₂ , graphite | Forms volatile oxides with W and Mo | | Calcium Silicate | CaO-SiO ₂ | 1540 | 2.9 | _ | _ | _ | _ | eBeam (good) | quartz | Post deposition thermal annealing at 500°C improves film quality and adhesion | | Calcium
Sulphide | CaS | — sublimes | 2.18 | - | _ | _ | 1100 | eBeam (poor) | ZrO ₂ , graphite | Decomposition of CaS bulk source material can be overcome by co-evaporation with S | | Calcium
Titanate | CaTiO ₃ | 1975 | 4.1 | _ | 1490 | 1600 | 1690 | eBeam (poor) | _ | Sputter deposition is the preferred method | | Calcium
Tungstate | CaWO ₄ | 1620 | 6.06 | _ | _ | _ | - | eBeam (good) | W, ZrO ₂ | Substrate heating improves the crystallinity of the deposit | | Carbon
(diamond) | С | sublimes | 1.8-2.3 | 0.22 | 1657 | 1867
sublimes | 2137 | eBeam (XInt) | graphite, W | Better film adhesion results from eBeam evaporation compared to vacuum arc deposition | | Cerium | Се | 795 | 8.23 | _ | 970 | 1150 | 1380 | eBeam (good) | Al ₂ O ₃ , BeO,
graphite | Ce deposits readily oxidize when exposed to air | | Ceric Oxide | CeO ₂ | 2600 | 7.3 | _ | 1890 | 2000
sublimes | 2310 | eBeam (good) | graphite, Ta | Stoichiometric films are best achieved using reactive evaporation with O ₂ . Substrate heating improves film quality | | Cerium Fluoride | CeF ₃ | 1418 | 6.16 | _ | - | _ | ~900 | eBeam (good) | Mo, Ta, W | Can be produced using bulk source
material. Substrate heating from
150-300°C improves adhesion and film
quality | | Cerium Oxide | Ce ₂ O ₃ | 1692 | 6.87 | _ | _ | _ | _ | eBeam (fair) | graphite, Ta | Mixed CeO ₂ -Ce ₂ O ₃ films can be reduced to Ce ₂ O ₃ by heating in UHV at 725°C | | Cesium | Cs | 28 | 1.87 | _ | -16 | 22 | 30 | eBeam (poor) | quartz | _ | | Cesium
Bromide | CsBr | 636 | 4.44 | _ | _ | _ | ~400 | _ | - | _ | | Cesium
Chloride | CsCl | 646 | 3.97 | _ | - | _ | ~500 | _ | - | _ | | Cesium
Fluoride | CsF | 684 | 3.59 | _ | 1 | _ | ~500 | _ | - | _ | | Cesium
Hydroxide | CsOH | 272 | 3.67 | - | _ | _ | ~550 | _ | _ | - | | Cesium lodide | CsI | 621 | 4.51 | _ | _ | _ | ~500 | eBeam (poor) | quartz, Pt | Stoichiometric Csl films are possible from bulk, source material, but good film coverage can be a challenge | | Chiolote | Na ₅ Al ₃ F ₁₄ | _ | 2.9 | - | - | _ | ~800 | eBeam (poor) | Al_2O_3 | Stoichiometric chiolite films are difficult to fabricate with eBeam evaporation | | Chromium | Cr | 1890 | 7.2 | 0.305 | 837 | 977
sublimes | 1157 | eBeam (good) | W, graphite | Films are very adherent. High deposition rates possible, but uniformity can be an issue | | Chromium
Boride | CrB | 2760 | 6.17 | _ | _ | _ | _ | - | _ | _ | | Chromium
Bromide | CrBr ₂ | 842 | 4.36 | _ | _ | _ | 550 | _ | _ | _ | | Chromium
Carbide | Cr ₃ C ₂ | 1890 | 6.68 | _ | _ | _ | ~2000 | eBeam (fair) | w | Can be fabricated by co-evaporation of Cr and C | | Chromium
Chloride | CrCl2 | 824 | 2.75 | _ | _ | _ | 550 | _ | _ | _ | | Material | Symbol | Melting | Density | Z-ratio | | Temperatur
por Pressu | | Evaporation | Crucible | Remarks | |---------------------------------|----------------------------------|----------|---------------|-----------|-----------|--------------------------|-------|--------------|---|---| | Material | Cymbol | Point °C | (bulk, g/cm³) | 21440 | 10-8 | 10-6 | 10⁴ | Method | Liner | remarko | | Chromium
Oxide | Cr ₂ O ₃ | 2435 | 5.21 | _ | _ | _ | ~2000 | eBeam (good) | W | Stoichiometry can be maintained by reactive evaporation in O ₂ | | Chromium
Siliside | Cr₃Si | 1710 | 6.51 | _ | - | _ | _ | _ | _ | _ | | Chromium
Silicon
Monoxide | Cr-SiO | | Influen | ced by Co | mposition | | | eBeam (good) | w | The quality Cr-SiO cermet films fabricated with eBeam evaporation improves with annealing at 425° C | | Cobalt | Co | 1495 | 8.9 | _ | 850 | 990 | 1200 | eBeam (XInt) | Al ₂ O ₃ , BeO,
graphite | Pellets or powder both work well as source material | | Cobalt Bromide | CoBr ₂ | 678 | 4.91 | _ | _ | — sublimes | 400 | _ | _ | _ | | Cobalt Chloride | CoCl ₂ | 740 | 3.36 | _ | _ | — sublimes | 472 | _ | - | - | | Cobalt Oxide | CoO | 1935 | 5.68 | - | _ | _ | - | eBeam (fair) | _ | CoO can be fabricated by reactive evaporation with O ₂₁ but sputter deposition is the preferred fabrication method | | Copper | Cu | 1083 | 8.92 | 0.437 | 727 | 857 | 1017 | eBeam (XInt) | Al ₂ O ₃ , Mo Ta,
graphite | Poor adhesion on most substrates. Use thin adhesion layer of Cr or Ti | | Copper
Chloride | CuCl | 422 | 3.53 | - | _ | _ | ~600 | eBeam (poor) | quartz | Stoichiometric CuCl films have been produced from pellets and powder source material | | Copper Oxide | Cu ₂ O | 1235 | 6 | _ | _ | - sublimes | ~600 | eBeam (good) | graphite, Al ₂ O ₃ ,
Ta | Thin films have been fabricated from stoichiometric Cu ₂ O powder | | Copper Sulfide | CuS | 1113 | 6.75 | | _ | | ~500 | _ | _ | _ | | | | | | | | sublimes | | | | Good films can be fabricated using | | Cryolite | Na ₃ AIF ₆ | 1000 | 2.9 | _ | 1020 | 1260 | 1480 | eBeam (good) | W, graphite | pellets or powder source material. Quality thin films can be fabricated from | | Dyprosium | Dy | 1409 | 8.54 | _ | 625 | 750 | 900 | eBeam (good) | W | bulk source material | | Dyprosium
Fluoride | DyF ₃ | 1360 | 6 | _ | _ | - sublimes | ~800 | eBeam (good) | W, Ta | Bulk source material is available in pellets and powder form | | Dyprosium
Oxide | Dy ₂ O ₃ | 2340 | 7.81 | _ | _ | _ | ~1400 | eBeam (fair) | W | Thin films have been fabricated from bulk source material | | Erbium | Er | 1497 | 9.06 | 0.74 | 650 | 775
sublimes | 930 | eBeam (good) | W, Ta | _ | | Erbium Fluoride | ErF ₂ | 1380 | 6.5 | _ | _ | _ | ~950 | _ | _ | _ | | Erbium Oxide | Er ₂ O ₃ | 2400 | 8.64 | _ | - | _ | ~1600 | eBeam (fair) | W | Reactive evaporation of bulk material in O_2 atmosphere maintains stoichiometry. | | Europium | Eu | 822 | 5.26 | _ | 280 | 360
sublimes | 480 | eBeam (fair) | Al ₂ O ₃ | _ | | Europium
Fluoride | EuF ₂ | 1380 | 6.5 | - | _ | _ | ~950 | _ | - | _ | | Europium
Oxide | Eu ₂ O ₃ | 2400 | 8.64 | ı | ı | _ | ~1600 | eBeam (good) | w | Reactive evaporation of $\mathrm{Eu_2O_3}$ powder or granules in $\mathrm{O_2}$ atmosphere maintains stoichiometry. | | Europium
Sulphide | EuS | _ | 5.75 | - | _ | _ | - | eBeam (good) | w | eBeam evaporation of EuS powder in UHV (10-8 torr base vacuum) has been reported in the literature | | Gadolinium | Gd | 1312 | 7.89 | ı | 760 | 900 | 1175 | eBeam (XInt) | Al ₂ 0 ₃ , W | eBeam evaporation of Gd directly from
the water cooled Cu hearth has been
reported | | Gadolinium
Oxide | $\mathrm{Gd_2O_3}$ | 2310 | 7.41 | _ | _ | _ | - | eBeam (fair) | Al ₂ 0 ₃ , W | Reactive evaporation of $\mathrm{Gd_2O_3}$ pellets in $\mathrm{O_2}$ maintains thin film stoichiometry. Refractive index increases with substrate heating | | Gallium | Ga | 30 | 5.9 | _ | 619 | 742 | 907 | eBeam (good) | graphite, Al ₂ O ₃ ,
BeO, quartz | Alloys with refractory metals | | Gallium
Antimonide | GaSb | 710 | 5.6 | _ | _ | _ | _ | eBeam (fair) | W, Ta | eBeam evaporation from bulk source material is possible | | | | Maldan | Daniella | | | Temperatur
por Pressu | | Francisco de la constanta l | Owneible | | |--|---|-----------------------------------|----------------------------------|-------------|-----------------|--------------------------|-------------------------
--|--|---| | Material | Symbol | Melting
Point °C | Density
(bulk, g/cm³) | Z-ratio | 10°8 | 10 ⁻⁶ | 10 ⁻⁴ | Evaporation
Method | Crucible
Liner | Remarks | | Gallium
Arsenide | GaAs | 1238 | 5.3 | _ | _ | _ | _ | eBeam (good) | graphite, W | Film quality is improved with ion assisted evaporation | | Gallium Nitride | GaN | — sublimes | 6.1 | _ | _ | _ | ~200 | eBeam (fair) | graphite, Al ₂ O ₃ ,
BeO, quartz | Reactive evaporation of Ga in 10 ⁻³ N ₂ | | Gallium
Oxide (ß) | Ga ₂ O ₃ | 1900 | 5.88 | _ | _ | _ | _ | eBeam (fair) | graphite, W | Reactive evaporation of Ga ₂ O ₃ in O ₂ partial pressure maintains stoichiometry | | Gallum
Phosphide | GaP | 1540 | 4.1 | _ | _ | 770 | 920 | eBeam (fair) | quartz, W | Co-evaporation of Ga and P has been reported | | Gemanium | Ge | 937 | 5.35 | 0.516 | 812 | 957 | 1167 | eBeam (XInt) | Al ₂ O ₃ , quartz,
graphite, Ni | Uniform films achieved with slow power ramp and swept beam | | Germanium
Nitride | Ge ₃ N ₂ | 450 | 5.2 | - | _ | — sublimes | ~650 | eBeam (poor) | _ | Sputtering is the preferred method of fabrication | | Germanium
Oxide | GeO ₂ | 1086 | 6.24 | _ | _ | _ | ~625 | eBeam (good) | graphite, Al ₂ O ₃ ,
quartz | GeO ₂ stoichiometry can be maintained
by reactive evaporation of bulk source
material in O ₂ | | Germanium
Telluride | GeTe | 725 | 6.2 | _ | _ | _ | 381 | _ | - | - | | Gold | Au | 1062 | 19.32 | 0.381 | 807 | 947 | 1132 | eBeam (XInt) | W, Al ₂ O ₃ ,
graphite, BN | Metal spitting can be an issue. Mitigate by slow power ramp with swept beam and low carbon content in source material | | Hafnium | Hf | 2230 | 13.09 | _ | 2160 | 2250 | 3090 | eBeam (good) | W | _ | | Hafnium Boride | HfB ₂ | 3250 | 10.5 | _ | - | _ | _ | _ | _ | Fabrication of HfB ₂ films by CVD has been reported | | Hafnium
Carbide | HfC | 4160 | 12.2 | _ | _ | - sublimes | ~2600 | _ | _ | _ | | Hafnium Nitride | HfN | 2852 | 13.8 | _ | _ | _ | _ | _ | _ | HfN films have been produced by reactive RF sputtering of Hf in N ₂ + Ar | | Hafnium Oxide | HfO ₂ | 2812 | 9.68 | _ | _ | - | ~2500 | eBeam (fair) | graphite, W | Can be fabricated by reactive evaporation in O ₂ or using bulk source material. Post process annealing at 500°C improves film quality | | Hafnium
Silicide | HfSi ₂ | 1750 | 7.2 | - | _ | _ | _ | eBeam (fair) | w | HfSi ₂ thin films have been fabricated
by eBeam evaporation of Hf on Si
substrates followed by annealing at
750°C for an hour | | Holmium | Но | 1470 | 8.8 | - | 650 | 770
sublimes | 950 | eBeam (good) | W | _ | | Holmium
Fluoride | HoF ₃ | 1143 | 7.64 | _ | _ | _ | ~800 | _ | quartz | _ | | Holmium Oxide | Ho ₂ O ₃ | 2370 | 8.41 | - | - | _ | _ | eBeam (fair) | W | ${\rm Ho_2O_3}$ thin films have been fabricated by eBeam evaporation of powdered source material or reactive evaporation of Ho in ${\rm O_2}$ | | Indium | In | 157 | 7.3 | 0.841 | 487 | 597 | 742 | eBeam (XInt) | Mo, graphite,
Al ₂ O ₃ | Wets Cu and W. Mo liner is preferred | | Indium
Antimonide | InSb | 535 | 5.8 | _ | 500 | _ | ~400 | eBeam (fair) | graphite, W | Thin films fabricated using powdered source material | | Indium
Arsenide | InAs | 943 | 5.7 | _ | 780 | 870 | 970 | - | _ | Sputter deposition is the preferred thin film fabrication technique | | Indium Oxide | In ₂ O ₃ | 1565 | 7.18 | - | _ | sublimes | ~1200 | eBeam (good) | Al_2O_3 | Thin films have been produced by reactive evaporation of powdered $\ln_2 O_3$ in O_2 partial pressure. | | Indium
Phosphide | InP | 1058 | 4.8 | _ | _ | 630 | 730 | eBeam (fair) | graphite, W | Deposits are P rich | | Indium Selenide | In ₂ Se ₃ | 890 | 5.7 | _ | _ | _ | _ | eBeam (fair) | graphite, W | Thin films have been fabricated by eBeam evaporation from powdered InSe. Post process annealing improves crystallinity | | Indium
Sesquisulphide | In ₂ S ₃ | 1050 | 4,9 | _ | _ | — sublimes | 850 | _ | _ | _ | | Indium Indium Antimonide Indium Arsenide Indium Oxide Indium Phosphide Indium Selenide | In InSb InAs In ₂ O ₃ InP | 157
535
943
1565
1058 | 7.3
5.8
5.7
7.18
4.8 | _
_
_ | 500
780
— | 870 — sublimes 630 — — | 742 ~400 970 ~1200 730 | eBeam (XInt) eBeam (fair) — eBeam (good) eBeam (fair) | Mo, graphite, Al ₂ O ₃ graphite, W Al ₂ O ₃ graphite, W | by eBeam evaporation of powders source material or reactive evapor of Ho in O ₂ Wets Cu and W. Mo liner is prefer Thin films fabricated using powde source material Sputter deposition is the preferred film fabrication technique Thin films have been produced by reactive evaporation of powdered in O ₂ partial pressure. Deposits are P rich Thin films have been fabricated by eBeam evaporation from powdere in Se. Post process annealing imp | | | | Melting | Density | | | remperatur
por Pressu | | Evaporation | Crucible | | |-----------------------|--|----------|---------------|---------|------|--------------------------|------|--------------|---|--| | Material | Symbol | Point °C | (bulk, g/cm³) | Z-ratio | 10·8 | 10 ⁻⁶ | 10-4 | Method | Liner | Remarks | | Indium
Sulphide | In ₂ S | 653 | 5.87 | _ | _ | _ | 650 | _ | _ | _ | | Indium Telluride | In ₂ Te ₃ | 667 | 5.8 | _ | _ | _ | _ | _ | _ | Thin films from co-evaporation of In and Te sources has been reported. | | Indium Tin
Oxide | In ₂ O ₃ -
SnO ₂ | 1800 | 6.43-7.14 | _ | _ | _ | _ | eBeam (good) | graphite | Thin films have been produced from 90% In ₂ O ₃ -10%SnO ₂ powder in O ₂ partial pressure. Substrate temperature of 250°C improves electrical conductivity of resulting films | | Iridium | lr | 2459 | 22.65 | _ | 1850 | 2080 | 2380 | eBeam (fair) | W | Better uniformity and adhesion can be achieved using sputter deposition | | Iron | Fe | 1535 | 7.86 | 0.349 | 858 | 998 | 1180 | eBeam (XInt) | Al ₂ O ₃ , BeO,
graphite | Molten Fe will attack and adhere to graphite, severely limiting crucible liner life | | Iron Bromide | FeBr ₂ | 689 | 4.64 | _ | _ | _ | 561 | _ | _ | _ | | Iron Chloride | FeCl ₂ | 670 | 2.98 | _ | _ | _ | 300 | | | | | II OII CIIIOI de | 1 6012 | 070 | 2.90 | | | sublimes | | | _ | _ | | Iron lodide | Fel ₂ | 592 | 5.31 | _ | _ | _ | 400 | _ | _ | _ | | Iron Oxide | FeO | 1425 | 5.7 | _ | _ | _ | _ | eBeam (poor) | | Sputter deposition preferred. | | Iron Oxide | Fe ₂ O ₃ | 1565 | 5.24 | _ | _ | _ | _ | eBeam (good) | Al ₂ O ₃ , BeO,
graphite | Fe ₂ O ₃ thin films fabricated by reactive evaporation of Fe in 0.1 Pa O ₂ partial pressure has been reported | | Iron Sulphide | FeS | 1195 | 4.84 | _ | _ | _ | _ | _ | _ | _ | | Lanthanum | La | 920 | 6.17 | _ | 990 | 1212 | 1388 | eBeam (XInt) | W, Ta | _ | | Lanthanum
Boride | LaB ₆ | 2210 | 2.61 | _ | _ | _ | _ | eBeam (fair) | - | LaB _e films and coatings are more commonly produced with sputter deposition. | | Lanthanum
Bromide | LaBr ₃ | 783 | 5.06 | _ | _ | _ | _ | _ | _ | _ | | Lanthanum
Fluoride | LaF ₃ | 1490 | 6 | _ | _ | — sublimes | 900 | eBeam (good) | Ta, Mo | Ion assisted eBeam evaporation improves film density and adhesion | | Lanthanum
Oxide | La ₂ O ₃ |
2250 | 5.84 | _ | _ | _ | 1400 | eBeam (good) | W, graphite | C contamination can occur with graphite crucible liners | | Lead | Pb | 328 | 11.34 | 1.13 | 342 | 427 | 497 | eBeam (XInt) | Al ₂ O ₃ , quartz,
graphite, W | - | | Lead Bromide | PbBr ₂ | 373 | 6.66 | _ | _ | _ | ~300 | _ | _ | _ | | Lead Chloride | PbCl ₂ | 501 | 5.85 | _ | _ | _ | ~325 | _ | _ | _ | | Lead Fluoride | PbF ₂ | 822 | 8.24 | _ | _ | — sublimes | ~400 | _ | _ | _ | | Lead lodide | Pbl ₂ | 502 | 6.16 | _ | | _ | ~500 | _ | | _ | | Lead Oxide | PbO | 890 | 9.53 | - | _ | _ | ~550 | eBeam (fair) | Al ₂ O ₃ , quartz, W | Stoichiometric PbO thin films can be produced using powdered source material | | Lead Stannate | PbSnO ₃ | 1115 | 8.1 | _ | 670 | 780 | 905 | eBeam (poor) | Al ₂ O ₃ , W | Disproportionates | | Lood October | D+O | 4005 | 0.4 | | _ | _ | ~500 | eDe (5.1) | ALO. === 1." | | | Lead Selenide | PbSe | 1065 | 8.1 | _ | | sublimes | | eBeam (fair) | Al ₂ O ₃ , graphite | | | Lead Sulphide | PbS | 1114 | 7.5 | _ | _ | —
sublimes | 550 | eBeam (fair) | Al ₂ O ₃ , quartz | Post deposition annealing at 150°C improves the crystallinity of the films | | Lead Telluride | PbTe | 917 | 8.16 | _ | 780 | 910 | 1050 | eBeam (poor) | Al ₂ O ₃ , graphite | Films produced from bulk PbTe tend to be Te rich. Sputter deposition is preferred | | Lead Titanate | PbTiO ₃ | _ | 7.52 | _ | _ | _ | _ | eBeam (fair) | W, Ta | Thin films of PbTiO ₃ with reactive co-
evaporation of PbO powder and TiO ₂
pellets in O ₂ partial pressure has been
reported | | Lithium | Li | 179 | 0.53 | _ | 227 | 307 | 407 | eBeam (good) | Ta, Al ₂ O ₃ , BeO | Li films oxidize readily in air | | Lithium
Bromide | LiBr | 547 | 3.46 | _ | _ | _ | ~500 | _ | _ | _ | | Material | O. washada | Melting | Density | 7 matic | | | Evaporation | Crucible | Domestia | | |--------------------------|----------------------------------|----------|---------------|---------|------|-----------------|-------------|--------------|--|---| | Material | Symbol | Point °C | (bulk, g/cm³) | Z-ratio | 10-8 | 10-6 | 10-4 | Method | Liner | Remarks | | Lithium
Chloride | LiCl | 613 | 2.07 | _ | _ | _ | 400 | _ | _ | - | | Lithium
Fluoride | LiF | 870 | 2.6 | _ | 875 | 1020 | 1180 | eBeam (good) | W, Mo, Ta, Al ₂ O ₃ | Rate control important for optical films.
Outgas prior to deposition rastered
beam | | Lithium lodide | Lil | 446 | 4.06 | _ | _ | _ | 400 | _ | _ | _ | | Lithium Oxide | Li ₂ O | 1427 | 2.01 | _ | _ | _ | 850 | _ | _ | - | | Lutetium | Lu | 1652 | 9.84 | | _ | _ | 1300 | eBeam (XInt) | Al ₂ O ₃ | _ | | Lutetuim Oxide | Lu ₂ O ₃ | 2489 | 9.81 | _ | _ | - | 1400 | eBeam (fair) | Al ₂ O ₃ | eBeam evaporation of powdered source material results in stoichiometric films by post deposition rapid thermal anneal in $\rm O_2$ at 400-600°C | | Magnesium | Mg | 651 | 1.74 | _ | 185 | 247
sublimes | 327 | eBeam (good) | W, graphite,
Al ₂ O ₃ | Powder is flammable. High deposition rates are possible | | Magnesium
Aluminate | MgAl ₂ O ₄ | 2135 | 3.6 | _ | _ | _ | - | - | _ | eBeam deposition from $\mathrm{MgAl_2O_4}$ powder has been reported | | Magnesium
Bromide | MgBr ₂ | 700 | 3.72 | _ | _ | _ | ~450 | _ | _ | _ | | Magnesium
Chloride | MgCl ₂ | 708 | 2.32 | _ | _ | _ | 400 | _ | _ | - | | Magnesium
Fluoride | MgF ₂ | 1266 | 2.9-3.2 | _ | _ | _ | 1000 | eBeam (XInt) | Al ₂ O ₃ , graphite,
Mo | Best optical properties result from substrate heating at 300°C and a deposition rate of ≤ 5 Å/sec | | Magnesium
lodide | Mgl ₂ | 700 | 4.24 | _ | _ | _ | 200 | _ | _ | - | | Magnesium
Oxide | MgO | 2800 | 3.58 | _ | - | _ | 1300 | eBeam (good) | Al ₂ O ₃ , graphite | Stoichiometric films result from reactive evaporation in partial pressure of 10 ⁻³ torr O ₂ | | Manganese | Mn | 1244 | 7.2 | _ | 507 | 572
sublimes | 647 | eBeam (good) | W, Al ₂ O ₃ , BeO | _ | | Manganese
Bromide | MnBr ₂ | 695 | 4.38 | _ | _ | _ | 500 | _ | _ | - | | Manganese
Chloride | MnCl ₂ | 650 | 2.98 | _ | _ | _ | 450 | _ | _ | - | | Manganese IV
Oxide | MnO ₂ | 535 | 5.03 | 1 | - | _ | 1 | eBeam (poor) | W, Mo, Al ₂ O ₃ | Stoichiometric thin films have been produced by reactive evaporation of Mn powder in 10 ⁻³ torr O ₂ | | Manganese
Sulphide | MnS | 1615 | 3.99 | _ | - | _ | 1300 | _ | _ | _ | | Mercury | Hg | -39 | 13.55 | _ | -68 | -42 | -6 | _ | _ | Toxic, not recommended for evaporation processes | | Mercury
Sulphide | HgS | sublimes | 8.1 | _ | _ | —
sublimes | 250 | eBeam (poor) | Al ₂ O ₃ | Toxic and decomposes, not recommended for evaporation processes | | Molybdenum | Мо | 2610 | 10.22 | _ | 1592 | 1822 | 2117 | eBeam (XInt) | graphite, W | Films are smooth, hard and adherent | | Molybdenum
Boride | MoB ₂ | 2100 | 7.12 | - | _ | _ | _ | - | _ | - | | Molybdenum
Carbide | Mo ₂ C | 2687 | 9.18 | _ | _ | _ | _ | - | _ | Thin films of Mo ₂ C by sputter deposition and CVD have been reported | | Molybdenum
Disulphide | MoS ₂ | 1185 | 4.8 | - | _ | _ | ~50 | - | _ | Fabrication of MoS ₂ by CVD has been reported | | Molybdenum
Silicide | MoSi ₂ | 2050 | 6.3 | _ | _ | _ | ~50 | _ | _ | MoSi ₂ films have been produced by sputter deposition | | Molybdenum
Trioxide | MoO ₃ | 795 | 4.7 | _ | _ | _ | ~900 | eBeam (fair) | Al ₂ O ₃ , graphite,
BN, Mo | Substrate heating improves film crystallinity | | Neodymium | Nd | 1024 | 7 | _ | 731 | 871 | 1062 | eBeam (XInt) | Al ₂ O ₃ , Ta | _ | | Neodymium
Fluoride | NdF ₃ | 1410 | 6.5 | - | _ | _ | ~900 | eBeam (good) | W, Mo, Al ₂ O ₃ | Substrate heating at 360°C improved film quality | | Neodymium
Oxide | Nd ₂ O ₃ | 2272 | 7.24 | _ | _ | _ | ~1400 | eBeam (good) | W, Ta | Films may be oxygen deficient.
Refractive index increases with
increasing substrate temperature | | Material | Symbol | Melting | Density | Z-ratio | | remperatur
por Pressu | | Evaporation | Crucible | Remarks | |------------------------|--------------------------------|----------|---------------|---------|------|--------------------------|-------|--------------|--|---| | material | Cymbol | Point °C | (bulk, g/cm³) | 21440 | 10-8 | 10-6 | 10⁴ | Method | Liner | Remarks | | Nickel | Ni | 1453 | 8.91 | 0.331 | 927 | 1072 | 1262 | eBeam (XInt) | Al ₂ O ₃ , BeO, W,
graphite | Differential thermal expansion between Ni and graphite can cause graphite crucible liners to crack on cooling | | Nickel Bromide | NiBr, | 963 | 4.64 | _ | _ | _ | 362 | _ | _ | _ | | | - | | | | | sublimes | | | | | | Nickel Chloride | NiCl ₂ | 1001 | 3.55 | _ | _ | sublimes | 444 | _ | _ | _ | | Nickel Oxide | NiO | 1990 | 7.45 | - | - 1 | _ | ~1470 | eBeam (good) | Al ₂ O ₃ , W | Substrate temperature of 125°C improves film adhesion and quality. Use of NiO powder as source material mitigates spitting | | Niobium
(Columbium) | Nb (Cb) | 2468 | 8.55 | ı | 1728 | 1977 | 2287 | eBeam (XInt) | graphite | Ion assisted eBeam evaporation
modifies Nb film stress from tensile to
compressive at a substrate temperature
of 400°C | | Niobium Boride | NbB ₂ | 3050 | 6.97 | _ | _ | _ | _ | _ | _ | - | | Niobium
Carbide | NbC | 3800 | 7.82 | _ | _ | _ | _ | eBeam (fair) | graphite | NbC thin films on Ti has been reported | | Niobium Nitride | NbN | 2573 | 8.4 | - | _ | _ | _ | eBeam (fair) | graphite, W | NbN films have been fabricated using reactive evaporation and reactive sputtering in N ₂ . NbN films by ion assisted evaporation have also been reported | | Niobium Oxide | NbO | _ | 6.27 | _ | _ | _ | 1100 | _ | _ | _ | | Niobium
Pentoxide | Nb ₂ O ₅ | 1530 | 4.47 | - | - | _ | - | _ | - | Nb ₂ O ₅ films produced by RF magnetron sputtering using a stoichiometric target have been reported | | Niobium
Telluride | NbTe | _ | 7.6 | _ | _ | _ | _ | _ | _ | _ | | Niobium-Tin | Nb₃Sn | I | ı | - | - | _ | - | eBeam (XInt) | graphite, Ta | Films produced by co-evaporation of Nb and Sn have been reported. Substrate heating improves film homogeneity | | Niobium
Trioxide | Nb ₂ O ₃ | 1780 | 7.5 | - | ١ | _ | ١ | _ | 1 | _ | | Osmium | Os | 1700 | 22.5 | _ | 2170 | 2430 | 2760 | _ | _ | _ | | Palladium | Pd | 1550 | 12.4 | _ | _ | _ | 1192 | eBeam (XInt) | W, Al ₂ O ₃ ,
graphite | Susceptible to metal spitting. Mitigate with slow power ramp and longer soak before deposition | | Palladium
Oxide | PdO | 870 | 8.31 | - | 1 | _ | 575 | eBeam (poor) | Al_2O_3 | Decomposes | | Phosphorus | Р | 41.4 | 1.82 | - | 327 | 361 | 402 | eBeam (poor) | Al_2O_3 | Reacts violently in air | | Platinum | Pt | 1769 | 21.45 | 0.245 | 1292 | 1492 | 1747 | eBeam (XInt) | W, Al ₂ O ₃ ,
graphite | Low deposition rates (< 5 Å/sec)
preferred for film uniformity. Carbon
contamination with graphite liners is
possible at high power | | Plutonium | Pu | 635 | 19 | | | _ | | _ | _ | Toxic. Radioactive | | Polonium | Po | 254 | 9.4 | _ | 117 | 170 | 244 | _ | _ | Toxic. Radioactive | | Potassium | K | 64 | 0.86 | _ | 23 | 60 | 125 | _ | quartz | Highly reactive in air | | Potassium
Bromide | KBr | 730 | 2.75 | - | _ | _ | ~450 | _ | quartz | Use gentle preheat to outgas | | Potassium
Chloride | KCI | 776 | 1.98 | - | _ | _ | ~510 | eBeam (fair) | Ta, quartz, Mo | Use gentle preheat to outgas | | Potassium
Fluoride | KF | 880 | 2.48 | _ | _ | _ | ~500 | eBeam (poor) | quartz | Use gentle preheat to outgas | | Potassium
Hydroxide | кон | 360 | 2.04 | - | _ | _ | ~400 | _ | _ | _ | | Potassum
lodide | KI | 72 | 3.13 | - | _ | _ | ~500 | _ | _ | _ | | Praseodymium | Pr | 931 | 6.78 | _ | 800 | 950 | 1150 | eBeam (good) | W, graphite, Ta | Pr
films will oxidize in air | | Praseodymium
Oxide | Pr ₂ O ₃ | 2125 | 6.88 | _ | _ | _ | 1400 | eBeam (good) | W, graphite,
ThO ₂ | Loses oxygen. Reports of Pr_2O_3 thin films grown by MBE | | | | Maldan | Demokr | | | emperatur | | Francisco de la constanta l | Owneible | | |-----------------------|--------------------------------|---------------------|--------------------------|---------|----------|--------------------|----------|--|---|--| | Material | Symbol | Melting
Point °C | Density
(bulk, g/cm³) | Z-ratio | 10-8 | por Pressu
10-6 | 10-4 | Evaporation
Method | Crucible
Liner | Remarks | | Radium | Ra | 700 | 5 | _ | 246 | 320 | 416 | _ | _ | _ | | Rhenium | Re | 3180 | 20.53 | _ | 1928 | 2207 | 2571 | eBeam (good) | W, graphite | Substrate heating at 600°C improves film properties | | Rhenium Oxide | ReO ₃ | 297 | 8.2 | _ | - | _ | ~100 | eBeam (good) | W, graphite | Films produced by reactive evaporation of Re in 10^{-3} torr ${\rm O_2}$ | | Rhodium | Rh | 1966 | 12.41 | _ | 1277 | 1472 | 1707 | eBeam (good) | W, graphite | _ | | Rubidium | Rb | 38.5 | 1.47 | _ | -3 | 37 | 111 | _ | quartz | _ | | Rubidium
Chloride | RbCl | 715 | 2.76 | _ | _ | _ | ~500 | _ | quartz | _ | | Rubidium
lodide | Rbl | 642 | 3.55 | _ | _ | _ | ~400 | _ | quartz | - | | Ruthenium | Ru | 2700 | 12.45 | _ | 1780 | 1990 | 2260 | eBeam (poor) | W | Material spits using eBeam. Sputter deposition is preferred | | Samarium | Sm | 1072 | 7.54 | _ | 373 | 460 | 573 | eBeam (good) | Al_2O_3 | _ | | Samarium
Oxide | Sm ₂ O ₃ | 2350 | 7.43 | _ | _ | _ | _ | eBeam (good) | W | Loses oxygen. Sputter deposition is preferred | | Samarium
Sulphide | Sm ₂ S ₃ | 1900 | 5.72 | _ | _ | _ | _ | _ | _ | - | | Scandium | Sc | 1539 | 2.99 | _ | 714 | 837 | 1002 | eBeam (XInt) | W, Mo, Al ₂ O ₃ | Alloys with Ta | | Scandium
Oxide | Sc ₂ O ₃ | 2300 | 3.86 | _ | - | _ | ~400 | eBeam (fair) | W | Loses oxygen. Films produced by reactive sputtering in O ₂ have been reported | | Selenium | Se | 217 | 4.79 | _ | 89 | 125 | 170 | eBeam (good) | W, Mo, graphite, Al_2O_3 | Toxic. Can contaminate vacuum systems | | Silicon | Si | 1410 | 2.42 | 0.712 | 992 | 1147 | 1337 | eBeam (fair) | Ta, graphite,
BeO | High deposition rates possible. Molten
Si can attack graphite liners limiting
crucible liner life | | Silicon Boride | SiB ₆ | _ | 2.47 | _ | _ | _ | _ | _ | _ | _ | | Silicon Carbide | SiC | 2700 | 3.22 | _ | _ | _ | 1000 | eBeam (fair) | W | Sputter deposition is the preferred thin film fabrication technique | | Silicon Dioxide | SiO ₂ | 1610-1710 | 2.2-2.7 | 1 | _ | _ | ~1025 | eBeam (XInt) | Al ₂ O ₃ , Ta, | Swept beam is critical to avoid hole drilling, since the source material will | | | 0.02 | 10101110 | | · | Influenc | ced by com | position | obodiii (ruiii) | graphite, W | have a shallow melt pool | | Silicon
Monoxide | SiO | 1702 | 2.1 | _ | _ | — sublimes | 850 | eBeam (fair) | W, Ta, graphite | Thin films from bulk SiO material has been reported | | Silicon Nitride | Si ₃ N ₄ | —
sublimes | 3.44 | _ | _ | _ | ~800 | _ | _ | Thin films of Si ₃ N ₃ by reactive sputter deposition have been reported | | Silicon Selenide | SiSe | _ | _ | _ | _ | _ | 550 | _ | _ | _ | | Silicon
Sulphide | SiS | — sublimes | 1.85 | - | _ | 1 | 450 | - | - | _ | | Sillicon
Telluride | SiTe ₂ | - | 4.39 | _ | - | _ | 550 | - | - | _ | | Silver | Ag | 961 | 10.49 | 0.529 | 847 | 958 | 1105 | eBeam (XInt) | W, Al ₂ O ₃ , Ta,
Mo, graphite | Swept beam during melt and focused beam during deposition is recommended for higher deposition rates | | Silver Bromide | AgBr | 432 | 6.47 | _ | _ | _ | ~380 | _ | _ | - | | Silver Chloride | AgCl | 455 | 5.56 | _ | _ | _ | ~520 | _ | | _ | | Silver lodide | AgI | 558 | 5.67 | _ | _ | _ | ~500 | - | _ | Thin films of Agl fabricated by thermal evaporation have been reported | | Sodium | Na | 97 | 0.97 | _ | 74 | 124 | 192 | - | quartz | Use gentle preheat to outgas. Metal reacts violently in air | | Sodium
Bromide | NaBr | 755 | 3.2 | _ | _ | _ | ~400 | - | _ | _ | | Sodium
Chloride | NaCl | 801 | 2.16 | _ | _ | _ | 530 | _ | _ | Thin films of NaCl fabricated by thermal evaporation in Knudsen cells with quartz crucibles have been reported | | Sodium
Cyanide | NaCN | 563 | - | _ | _ | _ | ~550 | - | _ | _ | | | | Melting | Density | | | Temperatur
por Pressu | | Evaporation | Crucible | | |------------------------|--------------------------------|----------|---------------|---------|------|--------------------------|-------|--------------|--|--| | Material | Symbol | Point °C | (bulk, g/cm³) | Z-ratio | 10-8 | 10 ⁻⁶ | 10-4 | Method | Liner | Remarks | | Sodium
Fluoride | NaF | 988 | 2.79 | ı | I | _ | ~700 | eBeam (good) | W, Ta, graphite,
BeO | Use gentle preheat to outgas. NaF thin films produced from powder source material and 230°C substrate heating have been reported | | Sodium
Hydroxide | NaOH | 318 | 2.13 | ı | ı | _ | ~470 | - | - | _ | | Strontium | Sr | 769 | 2.6 | - | 239 | 309 | 403 | eBeam (poor) | graphite, quartz | Wets refractory metals. May react strongly in air | | Strontium
Fluoride | SrF ₂ | 1190 | 4.24 | - | ı | _ | ~1000 | eBeam (poor) | Al ₂ O ₃ , W, quartz | Thin films of SrF ₂ produced by eBeam and thermal evaporation have been reported | | Strontium
Oxide | SrO | 2460 | 4.7 | _ | _ | - sublimes | 1500 | eBeam (poor) | Al_2O_3 | Loses oxygen. Reacts with W and Mo | | Strontium
Sulphide | SrS | >2000 | 3.7 | _ | _ | _ | _ | _ | _ | Decomposes | | Sulphur | S ₈ | 115 | 2 | _ | 13 | 19 | 57 | eBeam (poor) | quartz | Can contaminate vacuum systems | | Tantalum | Та | 2996 | 16.6 | 1 | 1960 | 2240 | 2590 | eBeam (XInt) | graphite | High melting point of Ta limits crucible liner selection. High vacuum is required to mitigate oxygen incorporation in films | | Tantalum
Boride | TaB ₂ | 3000 | 12.38 | - | 1 | _ | 1 | _ | - | _ | | Tantalum
Carbide | TaC | 3880 | 14.65 | _ | - | _ | ~2500 | _ | - | _ | | Tantalum
Nitride | TaN | 3360 | 16.3 | _ | _ | _ | _ | eBeam (fair) | graphite | Thin films of TaN can be produced by reactive evaporation in 10-3 torr N ₂ | | Tantalum
Pentoxide | Ta ₂ O ₅ | 1800 | 8.74 | _ | 1550 | 1780 | 1920 | eBeam (good) | graphite, Ta | Swept beam to avoid hole drilling. A thin Ti layer will improve adhesion to the substrate | | Tantalum
Sulphide | TaS ₂ | 1300 | _ | - | _ | _ | _ | _ | _ | _ | | Technetium | Tc | 2200 | 11.5 | _ | 1570 | 1800 | 2090 | _ | - | - | | Tellurium | Те | 452 | 6.25 | _ | 157 | 207 | 277 | eBeam (poor) | Al ₂ O ₃ , quartz,
graphite | Wets refractory metals | | Terbium | Tb | 1357 | 8.27 | ı | 800 | 950 | 1150 | eBeam (XInt) | Al ₂ O ₃ , graphite,
Ta | Thin films produced by sputter deposition and thermal evaporation have also been reported | | Terbium
Fluoride | TbF ₃ | 1176 | _ | - | _ | _ | ~800 | _ | _ | Sputter deposition is preferred | | Terbium Oxide | Tb ₂ O ₃ | 2387 | 7.87 | _ | _ | _ | 1300 | _ | _ | Thin films prepared by pulsed laser deposition have been reported | | Terbium
Peroxide | Tb ₄ O ₇ | 2340 | 7.3 | ı | ı | _ | ı | - | - | Annealing of ${\rm Tb_2O_3}$ films at 800°C in air to produce stable ${\rm Tb_4O_7}$ has been reported | | Thallium | TI | 302 | 11.85 | - | 280 | 360 | 470 | eBeam (poor) | Al ₂ O ₃ , quartz,
graphite | Thallium and its compounds are very toxic. Wets freely | | Thallium
Bromide | Tlbr | 480 | 7.56 | 1 | _ | sublimes | ~250 | _ | _ | Thermal evaporation of TIBr thin films has been reported | | Thallium | TICI | 430 | 7 | _ | _ | _ | ~150 | _ | _ | _ | |
Chloride | | | | | | sublimes | | | | | | Thallium
Iodide (ß) | TII | 440 | 7.09 | _ | _ | | ~250 | eBeam (poor) | Al ₂ O ₃ , quartz | Low stress thin films can be produced
by eBeam evaporation with a substrate
temperature of 100°C | | Thallium Oxide | Tl ₂ O ₃ | 717 | 9.65 | _ | _ | _ | 350 | - | _ | Disproportionates at 850°C to Tl ₂ O | | Thorium | Th | 1875 | 11.7 | _ | 1430 | 1660 | 1925 | eBeam (XInt) | W, Ta, Mo | Toxic and mildly radioactive | | Thorium
Bromide | ThBr₄ | _ | 5.67 | _ | _ | - sublimes | | _ | _ | _ | | Thorium
Carbide | ThC ₂ | 2273 | 8.96 | _ | _ | _ | ~2300 | _ | _ | _ | | Thorium
Dioxide | ThO ₂ | 3050 | 10.03 | _ | - | _ | ~2100 | eBeam (good) | W | Stable stoichiometric films of ThO ₂ produced from powdered source material have been reported | | Material | Symbol | Melting | Density | Z-ratio | | Temperatur
por Pressu | | Evaporation | Crucible | Remarks | |-------------------------|--------------------------------|----------|---------------|---------|------|--------------------------|-------|--------------|---|--| | Material | Cymbol | Point °C | (bulk, g/cm³) | 21440 | 10-8 | 10-6 | 10-4 | Method | Liner | resina ko | | Thorium
Fluoride | ThF₄ | 1110 | 6.3 | _ | _ | _ | ~750 | eBeam (fair) | Ta, Mo, graphite | Use gentle preheat to outgas.
Substrate temperature of 175°C
improves film adhesion and quality | | Thorium
Oxyfluoride | ThOF ₂ | 900 | 9.1 | _ | _ | _ | ١ | eBeam (poor) | W, Ta, Mo,
graphite | Does not evaporate stoichiometrically, resulting films are primarily ThF ₄ | | Thorium
Sulphide | ThS ₂ | _ | 6.8 | - | _ | - | - | | | - | | Thulium | Tm | 1545 | 9.32 | _ | 461 | 554
sublimes | 680 | eBeam (good) | Al_2O_3 | _ | | Thulium Oxide | Tm ₂ O ₃ | _ | 8.9 | _ | _ | | 1500 | _ | _ | Thin films of Tm ₂ O ₃ by eBeam evaporation and MBE have been reported | | Tin | Sn | 232 | 7.75 | 0.724 | 682 | 807 | 997 | eBeam (XInt) | Al ₂ O ₃ , Ta,
graphite, W | High deposition rates possible, but uniformity may suffer. Slow power ramp to mitigate cavitation of melt pool | | Tin Oxide | SnO ₂ | 1127 | 6.95 | _ | _ | — sublimes | ~1000 | eBeam (XInt) | Al ₂ O ₃ , quartz | Substrate temperature above 200°C improves film crystallinity | | Tin Selenide | SnSe | 861 | 6.18 | - | _ | _ | ~400 | - | - | Stoichiometric thin films of SnSe produced by thermal evaporation of powdered source material have been reported | | Tin Sulphide | SnS | 882 | 5.08 | _ | _ | _ | ~450 | eBeam (poor) | quartz, W | Thin films prepared by eBeam evaporation of SnS powder and reactive co-evaporation of Sn and S have been reported | | Tin Telluride | SnTe | 780 | 6.44 | _ | _ | _ | ~450 | eBeam (poor) | quartz | Thin films of SnTe produced with eBeam evaporation at a substrate temperature of 300°C have been reported | | Titanium | Ti | 1675 | 4.5 | 0.628 | 1067 | 1235 | 1453 | eBeam (XInt) | W, graphite, TiC | Films are very adherent to almost any substrate | | Titanium Boride | TiB ₂ | 2980 | 4.5 | _ | _ | _ | _ | _ | _ | Sputter deposition is the preferred thin film fabrication technique | | Titanium
Carbide | TiC | 3140 | 4.93 | _ | _ | _ | ~2300 | eBeam (fair) | W, graphite | eBeam evaporation of TiC thin films with
and without ion beam assistance have
been reported | | Titanium
Dioxide | TiO ₂ | 1640 | 4.29 | _ | _ | _ | ~1300 | eBeam (good) | W, graphite, Ta | Stoichiometric thin films of TiO ₂ have been produced from powder source material and a substrate temperature of 600°C | | Titanium
Monoxide | TiO | 1750 | _ | _ | _ | _ | ~1500 | eBeam (good) | W, graphite, Ta | Outgas with gentle preheat prior to deposition | | Titanium Nitride | TiN | 2930 | 5.43 | _ | _ | _ | ı | eBeam (good) | W, graphite, TiC | Thin films have been prepared by reactive evaporation of Ti in ${\bf N_2}$ partial pressure | | Titanium
Sesquioxide | Ti ₂ O ₃ | 2130 | 4.6 | _ | _ | _ | ı | eBeam (good) | W, Ta, graphite | Stoichiometric films have been produced by reactive evaporation of ${\rm Ti}_2{\rm O}_3$ powder in 2.5 x 10 ⁻⁴ torr ${\rm O}_2$ | | Tungsten | W | 3410 | 19.3 | 0.163 | 2117 | 2407 | 2757 | eBeam (good) | W | Long, slow preheat is required to condition the source material. Raster the electron beam to avoid hole drilling | | Tungsten
Boride | WB ₂ | 2900 | 12.75 | _ | _ | - | ı | 1 | 1 | - | | Tungsten
Carbide | W ₂ C | 2860 | 17.15 | _ | 1480 | 1720 | 2120 | eBeam (good) | W, graphite | Thin films prepared by eBeam evaporation of powdered source material have been reported. RF Sputter deposition is widely reported | | Tungsten
Telluride | WTe ₃ | _ | 9.49 | _ | _ | _ | - | - | | _ | | Tungsten
Trioxide | WO ₃ | 1473 | 7.16 | - | _ | — sublimes | 980 | eBeam (good) | W | Thin films are most commonly prepared using WO ₃ powder source material | | Uranium | U | 1132 | 19.07 | _ | 1132 | 1327 | 1582 | eBeam (good) | W, Mo, graphite | Depleted uranium thin films oxidize easily even in low partial pressure of O ₂ | | Uranium
Carbide | UC ₂ | 2260 | 11.28 | _ | - | _ | 2100 | _ | _ | _ | | Material | Symbol | Melting | Density | Z-ratio | | remperatur
por Pressu | | Evaporation | Crucible | Remarks | |------------------------------|--|------------|---------------|---------|------|--------------------------|-------|--------------|---|--| | | G y50. | Point °C | (bulk, g/cm³) | | 10-8 | 10-6 | 10⁴ | Method | Liner | | | Uranium
Dioxide | UO ₂ | 2176 | 10.9 | - | _ | - | _ | eBeam (fair) | W | Stoichiometric thin films produced by reactive evaporation of depleted uranium in O ₂ partial pressure have been reported | | Uranium
Fluoride | UF ₄ | ~1000 | 1 | - | - | _ | 300 | - | _ | Thin films fabricated by sputter deposition of depleted uranium by Fions has been reported | | Uranium Oxide | U ₃ O ₈ | Decomposes | 8.3 | _ | - | _ | - | _ | _ | Thin films produced by reactive sputter deposition of depleted uranium targets in ${\rm O_2}$ have been reported. | | Uranium
Phosphide | UP ₂ | _ | 8.57 | _ | _ | _ | 1200 | _ | _ | - | | Uranium
Sulphide | U_2S_3 | _ | _ | _ | _ | _ | 1400 | _ | _ | _ | | Vanadium | V | 1890 | 5.96 | - | 1162 | 1332 | 1547 | eBeam (XInt) | W, graphite, Ta | Wets Mo. eBeam evaporation is preferred | | Vanadium
Boride | VB_2 | 2400 | 5.1 | _ | _ | _ | _ | _ | _ | _ | | Vanadium
Carbide | VC | 2810 | 5.77 | _ | _ | _ | ~1800 | - | _ | - | | Vanadium
Dioxide | VO ₂ | 1967 | 4.34 | _ | _ | — sublimes | ~575 | eBeam (poor) | W, graphite | Difficult to maintain stoichiometry by eBeam evaporation, sputter deposition is preferred | | Vanadium
Nitride | VN | 2320 | 6.13 | _ | _ | _ | _ | - | _ | - | | Vanadium
Pentoxide | V ₂ O ₅ | 690 | 3.36 | - | _ | _ | ~500 | eBeam (good) | W, graphite | Thin films prepared from powdered source material are nearly stoichiometric. Post process annealing at 280° in O ₂ restores full stoichiometry | | Vanadium
Silicide | VSi ₂ | 1700 | 4.42 | _ | _ | _ | _ | _ | _ | - | | Ytterbium | Yb | 824 | 6.98 | - | 520 | 590
sublimes | 690 | eBeam (good) | Al ₂ O ₃ , W, Ta | Store Yb evaporation source material in N ₂ desiccator to mitigate oxidation | | Ytterbium
Fluoride | YbF ₃ | 1157 | 8.17 | _ | _ | _ | ~800 | eBeam (fair) | Ta, Mo, W | Preheat slowly and evaporate at ≤ 10Å/sec to mitigate dissociation | | Ytterbium
Oxide | Yb ₂ O ₃ | 2346 | 9.17 | _ | _ | _ sublimes | ~1500 | eBeam (fair) | Al ₂ O ₃ , W, Ta | Thin films produced by reactive evaporation in 8 x 10-5 torr O ₂ have been reported. | | Yttrium | Y | 1509 | 4.48 | _ | 830 | 973 | 1157 | eBeam (XInt) | W, Al ₂ O ₃ | Substrate heating at 300°C improves adhesion and film smoothness | | Yttrium
Aluminum
Oxide | Y ₃ Al ₅ O ₁₂ | 1990 | - | - | _ | _ | _ | eBeam (good) | W, Al ₂ O ₃ | Films prepared from powdered source
material, typically with dopants. YAG
films post deposition annealed at
1100°C in vacuum improves crystallinity | | Yttrium
Fluoride | YF ₃ | 1387 | 4.01 | - | _ | - | _ | eBeam (good) | W, Ta, Mo, Al ₂ O ₃ | eBeam evaporation at a rate of
≤ 10Å/sec and substrate temperature
of 200°C produces crystalline films with
good adhesion | | Yttrium Oxide | Y ₂ O ₃ | 2680 | 4.84 | 1 | 1 | — sublimes | ~2000 | eBeam (good) | graphite, W | eBeam evaporated films can be oxygen deficient, post deposition annealing in 10 ³ torr O ₂ at 525°C results in stoichiometric films. | | Zinc | Zn | 419 | 7.14 | 0.514 | 127 | 177 | 250 | eBeam (XInt) | W, Al ₂ O ₃ , quartz,
graphite | Evaporates well under a wide range of conditions | | Zinc
Antimonide | Zn ₃ Sb ₂ | 546 | 6.3 | _ | _ | _ | _ | _ | _ | - | | Zinc Bromide | ZnBr ₂ | 394 | 4.22 | _ | _ | _ | ~300 | _ | _ | - | | Zinc Fluoride | ZnF ₂ | 87 | 4.84 | _ | _ | _ | ~800 | eBeam (fair) | quartz, W | Thin films prepared by eBeam evaporation of powdered source material have been reported. Substrate heating at 400°C improved crystallinity | | Zinc Nitride | Zn ₃ N ₂ | _ | 6.22 | _ | _ | _ | _ | _ | _ | Reactive sputter deposition in N ₂ has been reported | | Material | Symbol | Melting
Point °C | Density
(bulk, g/cm³) | Z-ratio | Temperature
°C @ Vapor Pressure (Torr) | | | Evaporation | Crucible | Remarks | |-----------------------|--------------------|---------------------|--------------------------|---------|---|------|-------|--------------|----------------------
--| | | | | | | 10-8 | 10-6 | 10⁴ | Method | Liner | romano | | Zinc Oxide | ZnO | 1975 | 5.61 | _ | ı | ı | ~1800 | eBeam (fair) | quartz, W | Quality thin films fabricated using
eBeam evaporation at a rate of 8Å/sec
and a substrate temperature of 300°C
has been reported | | Zinc Selenide | ZnSe | 1526 | 5.42 | - | 1 | 1 | 660 | eBeam (fair) | W, Ta, Mo,
quartz | Deposition rate of ≤ 5 Å/sec. Thin films are polycrystalline and a substrate temperature of 300°C improves adhesion and size of crystallites | | Zinc Sulphide | ZnS | 1830 | 4.09 | _ | — — ~800
sublimes | | | eBeam (good) | W, Ta, Mo,
quartz | Thin films produced by eBeam evaporation display a preferred (111) orientation and best optical properties result from a 400°C substrate temperature | | Zinc Telluride | ZnTe | 1238 | 6.34 | ı | I | I | ~600 | eBeam (fair) | W, Ta, Mo,
quartz | Stoichiometric thin films produced
by eBeam evaporation have good
crystallinity with a substrate temperature
of 230°C. Optical properties are
thickness dependent | | Zircon | ZrSiO ₄ | 2550 | 4.56 | | _ | _ | _ | _ | _ | _ | | Zirconium | Zr | 1852 | 6.4 | _ | 1477 | 1702 | 1987 | eBeam (XInt) | W, quartz | Alloys with W. Thin films oxidize readily | | Zirconium
Boride | ZrB ₂ | 3040 | 6.08 | _ | _ | _ | _ | eBeam (good) | W, quartz | Stoichiometric films prepared by
co-evaporation of Zr and B have been
reported | | Zirconium
Carbide | ZrC | 3540 | 6.73 | _ | - | _ | ~2500 | eBeam (poor) | graphite | Quality thin films of ZrC using pulsed laser deposition have been reported | | Zirconium
Nitride | ZrN | 2980 | 7.09 | - | 1 | 1 | 1 | I | I | Thin films of ZrN prepared by N_{2} ion assisted evaporation of Zr have been reported | | Zirconium
Oxide | ZrO ₂ | 2700 | 5.49 | - | _ | _ | ~220 | eBeam (good) | W, graphite | Reactive evaporation in 10 ⁻³ torr O ₂ produce as deposited stoichiometric films. For eBeam evaporated films, post deposition annealing in O ₂ restores stoichiometry | | Zirconium
Silicide | ZrSi ₂ | 1700 | 4.88 | _ | _ | _ | _ | _ | _ | eBeam evaporated Zr on Si substrates forms ZrSi ₂ following post deposition thermal annealing at 600°C |